\diamond ENTRANCE EXAMINATION FOR INTERNATIONAL MASTER'S PROGRAM 2022

Group : Mathematics [13:40~14:40]

Question I Answer the following questions. (30 points)
(1) Find the length of the following curve within the given domain.
$y=\frac{3}{2}\left(e^{\frac{x}{3}}+e^{-\frac{x}{3}}\right) \quad(0 \leq x \leq 1)$
(2) Find the whole length of the following closed-curve. $x^{\frac{2}{3}}+y^{\frac{2}{3}}=3^{\frac{2}{3}}$
(3-1) Prove that the length of a curve in the 2D polar coordinate system $r=f(\theta) \quad(0 \leq \theta \leq 2 \pi)$ is given as $L=\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{\mathrm{d} r}{\mathrm{~d} \theta}\right)^{2}} \mathrm{~d} \theta$, where r and θ denote the radius and angle components of a curve in the 2 D polar coordinate system, respectively.
(3-2) Find the whole length of the following closed-curve.

$$
r=2(1+\cos \theta) \quad(0 \leq \theta \leq 2 \pi)
$$

Question II For a given matrix $A=\left[\begin{array}{ccc}a & a & -a \\ a & b & a \\ -a & a & b\end{array}\right]$, answer the following questions. (40 points)
(1) Find the conditions such that the rank of the matrix A is three.
(2) Assume $a=1, b=3$ in the following questions.
(2-1) Find all the eigenvalues of the matrix A and each eigenvector whose norm is 1 .
(2-2) A can be diagonalized with $S^{\top} A S$ using an orthogonal matrix S. Obtain the matrix S and diagonalized matrix $B=S^{\top} A S$.
(2-3) Calculate A^{n}.
Question III Find the general solution for the following differential equations. (30 points)
(1) $2 y^{2}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2=0$
(2) $(2 x y-\cos x) \mathrm{d} x=\left(2 y-x^{2}\right) \mathrm{d} y$
(3) $y^{2}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x$

