2022 ENTRANCE EXAMINATION FOR INTERNATIONAL MASTER'S PROGRAM Departments of Mechanical Engineering and Hydrogen Energy Systems Thermal Engineering (Group A) [11:10~12:40]

(I) Consider a reversible cycle that consists of four processes between a heat source at a temperature of $T_{\rm H}$ and a heat sink at a temperature of $T_{\rm L}$ using a mass of *m* of an ideal gas as a working fluid.

Initially (State 1) the temperature and pressure of the gas are $T_{\rm H}$ and p_1 , respectively.

State $1 \rightarrow 2$: The gas at State 1 is isothermally expanded to State 2 (pressure p_2).

State $2 \rightarrow 3$: The gas at State 2 is adiabatically expanded to State 3 (temperature T_L , pressure p_3).

State $3 \rightarrow 4$: The gas at State 3 is isothermally compressed to State 4 (pressure p_4) until the pressure of p_4 is equal to p_2 .

State $4 \rightarrow 1$: The gas at State 4 is adiabatically compressed to State 1.

The gas constant and the specific-heat ratio of the gas are given by R and κ , respectively. The specific heat is constant and independent of temperature. Noting that the subscripts 1-4 denote each state, answer the following questions using the given physical quantities: m, R, $T_{\rm H}$, $T_{\rm L}$, p_2 and κ . (25 points)

- (1) Illustrate the p-V (pressure-volume) diagram of this cycle indicating States 1, 2, 3 and 4.
- (2) Determine the pressure p_3 at State 3 and the pressure p_1 at State 1.
- (3) Determine the work L_{12} done by the gas and the entropy change $S_2 S_1$ during the process of State $1 \rightarrow 2$.
- (4) Determine the internal energy change $U_3 U_2$ during the process of State $2 \rightarrow 3$.
- (5) Determine the net work L_{net} done by the gas during one cycle.
- (6) In this cycle, consider new conditions (States 1', 2, 3' and 4') that m, R, κ, T_H, p_2 and p_4 remain the same, but the heat-sink temperature is changed to T_L' . The heat Q_{12}' absorbed from the heat source during the process of State $1' \rightarrow 2$ is twice as much as the heat Q_{12} absorbed from the heat source during the process of State $1 \rightarrow 2$ in the original cycle. Determine the heat-sink temperature T_L' , the thermal efficiency η_{th}' , and the net work L_{net}' done by the gas during one cycle in the new conditions.

(II) A flat plate of thickness L and thermal conductivity k is initially at a uniform temperature T_0 . The x-axis is set in the thickness direction of the plate. The left side of the plate (x = 0) is insulated, and the other side (x = L) is in contact with the fluid flowing along the plate as shown in Fig. 2-

1. At the time of t = 0, the plate starts to experience uniform volumetric heating at a rate \dot{q}_v per unit volume and time, and heat is transferred to the fluid at temperature of T_0 by convection having heat transfer coefficient *h*. Assume one-dimensional heat conduction in the *x* direction across the plate. The heat conduction equation at steady-state

condition is given by $k \frac{d^2T}{dx^2} + \dot{q_v} = 0$. Answer the following questions. (25 points).

- (1) Assuming the maximum temperature T_{max} in the plate and the temperature T_{w} at x=L in the steady state $(t \rightarrow \infty)$, sketch the temperature distribution at steady-state condition in Fig. 2-2.
- (2) Express the heat flux q at x=L in the steady state using L and $\dot{q_v}$.
- (3) Determine the temperature distribution T(x) in the plate as a function of x in the steady state using h, k, L, \dot{q}_v and T_0 .
- (4) Answer whether the wall temperature T(x=L) in the transient state is higher or lower than the wall temperature T_w at the steady state. Also, answer the reason.
- (5) If the heat transfer coefficient *h* increases due to an increase in the flow rate, the steady-state temperature difference T_{w} - T_{0} decreases. Does this make the temperature difference T_{max} - T_{w} in the plate change? Answer with the reason.

