ENTRANCE EXAMINATION FOR INTERNATIONAL MASTER'S PROGRAM 2022

Group A Dynamics of machinery

Question I. An object of mass m moves along a straight line on a smooth horizontal surface. The displacement of the object is x, and its velocity is $v(=\dot{x})$. A resistance force $-kv^2$ proportional to the square of the object's velocity acts on the object from the surrounding fluid. Here, constant k is a positive real. The displacement and velocity of the object at time t = 0 are x = 0 and $v = v_0$, respectively. Answer the following questions about the motion of this object. (25 points)

- (1) Find the equation of motion of the object.
- (2) Find v, the velocity of the object, as a function of time t.
- (3) Find x, the displacement of the object, as a function of t.
- (4) Find the time when the velocity of the object becomes $v_0/2$.
- (5) Find the distance the object has traveled while the velocity of the object changes from v_0 to $v_0/2$.

- (1) Find a mass matrix M and a stiffness matrix K of this system, when the displacement vector is written as $x = [x \ \theta]^T$ and the equation of motion of the system is written as $M\ddot{x} + Kx = 0$. Here $[]^T$ means transpose.
- (2) Let $\omega_1 < \omega_2$ be two natural angular frequencies of this system. Find ω_1 and ω_2 under the condition $\alpha > 1/3$.
- (3) Derive two natural modes X_1 and X_2 correspond to ω_1 and ω_2 obtained (2).
- (4) When $\alpha = 0$, explain natural angular frequencies and natural modes of the system briefly.

G