Group A

Dynamics of machinery

Question I. An object of mass m moves along a straight line on a smooth horizontal surface. The displacement of the object is x, and its velocity is $v(=\dot{x})$. A resistance force $-k v^{2}$ proportional to the square of the object's velocity acts on the object from the surrounding fluid. Here, constant k is a positive real. The displacement and velocity of the object at time $t=0$ are $x=0$ and $v=v_{0}$, respectively. Answer the following questions about the motion of this object. (25 points)
(1) Find the equation of motion of the object.
(2) Find v, the velocity of the object, as a function of time t.
(3) Find x, the displacement of the object, as a function of t.
(4) Find the time when the velocity of the object becomes $v_{0} / 2$.
(5) Find the distance the object has traveled while the velocity of the object changes from v_{0} to $v_{0} / 2$.

Question II. Figure (a) shows a uniform rigid rod of mass m and length $2 l$ (moment of inertia around center of gravity G is $m l^{2} / 3$) is on a smooth horizontal surface. The rigid rod is connected to the rigid wall by two springs with spring constants k and αk as shown in the figure. Let the displacement of the center of gravity of the rod be x and the clockwise rotational angle around the center of gravity be θ as shown in Fig. (b) Assuming that both x and θ are small, answer the following questions.(25 points)
(1) Find a mass matrix \boldsymbol{M} and a stiffness matrix \boldsymbol{K} of this system, when the displacement vector is written as $\boldsymbol{x}=[x \theta]^{T}$ and the equation of motion of the system is written as $\boldsymbol{M} \ddot{\boldsymbol{x}}+\boldsymbol{K} \boldsymbol{x}=\mathbf{0}$. Here [$]^{T}$ means transpose.
(2) Let $\omega_{1}<\omega_{2}$ be two natural angular frequencies of this system. Find ω_{1} and ω_{2} under the condition $\alpha>1 / 3$.
(3) Derive two natural modes \boldsymbol{X}_{1} and \boldsymbol{X}_{2} correspond to ω_{1} and ω_{2} obtained (2).
(4) When $\alpha=0$, explain natural angular frequencies and natural modes of the system briefly.

(a)

(b)

