2023 ENTRANCE EXAMINATION FOR INTERNATIONAL MASTER'S PROGRAM Departments of Mechanical Engineering and Hydrogen Energy Systems

Dynamics of Machinery (Group A) [09:00–10:30]

Examinee's number

I.As shown in the figure, a double pendulum, which consists of two same uniform bars of length l and mass m connected at point A, is suspended from point O.The motions of the two bars are in the vertical plane and they are free to rotate around points O and A. The center of gravity of the upper bar is (x_1, y_1) and that of the lower bar is (x_2, y_2) . Find the angles θ and ϕ when the double pendulum is at rest with a constant external force F acting horizontally on the center of gravity of the lower bar, according to the following questions. The gravitational acceleration is g, as shown in the figure. (25 points)

- (1) Find two centers of gravity of both upper and lower bars (x_1, y_1) and (x_2, y_2) respectively using l, θ and ϕ .
- (2) Find virtual displacements for centers of gravity of both upper and lower bars $(\delta x_1, \delta y_1)$ and $(\delta x_2, \delta y_2)$ using $\delta\theta$ and $\delta\phi$. $\delta\theta$ and $\delta\phi$ are the virtual (angular) displacements of θ and ϕ , respectively.
- (3) Calculate a virtual work δW done by both gravitational force mg and horizontal force F.
- (4) Find the tangent of θ and the tangent of ϕ using the principle of the virtual work.

II.As shown in the figure, consider a 2DOF linear vibration system consisting of two point masses of mass m, 2m, and three springs of spring constant k, k and 2k. Both ends of the system are fixed, and all springs are at their natural lengths at the equilibrium position of the system. Answer the following questions. (25 points)

- (1) Derive the equations of motion of this system.
- (2) Express the equations of motion of this system in matrix form $M\ddot{x} + Kx = 0$. Here M and K denote the mass and the stiffness matrices, $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ is displacement vector and $\begin{bmatrix} \end{bmatrix}^T$ means transpose.
- (3) Find the frequency equation (characteristic equation) of this system.
- (4) Find the eigenvalues $\hat{\omega}_i^2$, (i = 1, 2) and natural modes \mathbf{X}_i , (i = 1, 2) of this system. Normalize the natural modes as $\mathbf{X}_i = \begin{bmatrix} 1 & X \end{bmatrix}^{\mathrm{T}}$.
- (5) Express the general solution of free vibration of this system using ω_1 and ω_2 .
- (6) Calculate the free vibration of this system with the initial conditions of $x_1|_{t=0} = x_2|_{t=0} = 1$ and $\dot{x}_1|_{t=0} = \dot{x}_2|_{t=0} = 0$.

Score

