(I) Answer the following questions about geometric transformation. (30 points)
(1) An equilateral triangle inscribed a circle $x^{2}+y^{2}=2$ is set so that one of its apex A is on $(1,1)$ as shown in the figure. Answer the coordinate values of the remaining apexes of the equilateral triangle, B and C.

(2) Linear transformation matrix M represents mirroring transformation against a line $y=a x$. The transformation M mirrors the point P to the point Q as in the figure. Then, express M using a.

(II) Find the general solution for the following differential equations. (35 points)
(1) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x-2 y-3}{3 x-y+2}$
(2) $x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}-x y-3 x^{2}$
(3) $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=10 \sin x$
(III) Consider a volume V which is the intersection (common part) of a sphere A and a cylinder B. Answer the following questions. (35 points)
(1) If sphere $A_{1}: x^{2}+y^{2}+z^{2} \leqq 4 a^{2} \quad(a>0)$ and cylinder $B_{1}: x^{2}+y^{2} \leqq a^{2} \quad(a>0)$, find the volume V_{1}.
(2) If sphere $A_{2}: x^{2}+y^{2}+z^{2} \leqq a^{2} \quad(a>0)$ and cylinder $B_{2}: x^{2}+y^{2} \leqq a x \quad(a>0)$, find the volume V_{2}.

