Entrance Examination for International Master's Program 2023

- (I)A reversible cycle is considered as shown in Fig. 1. The working fluid of mass m is an ideal gas whose specific heat is independent of temperature. From State 1 to State 2, the gas is compressed isothermally at a temperature $T_{\rm L}$. From State 2 to State 3, the gas is heated at a constant pressure $p_{\rm H}$. From State 3 to State 4, the gas expands isothermally at a temperature $T_{\rm H}$. From State 4 to State 1, the gas is cooled at a constant pressure $p_{\rm L}$. The gas constant and the specific-heat ratio of the gas are R and κ , respectively. Answer the following questions using the above given symbols of physical quantities. (25points)
 - (1) Draw this cycle on a T-S diagram with the numbers of States 1, 2, 3 and 4. (T: temperature, S: entropy)
 - (2) Find the heat Q_{12} rejected from the gas during the process $1 \rightarrow 2$.
 - (3) Find the heat O_{23} added to the gas during the process $2 \rightarrow 3$.
 - (4) Prove the relation $Q_{23} = Q_{41}$. Here, Q_{41} is the heat rejected from the gas during the process $4 \rightarrow 1$.
 - (5) Find the net work W done by the gas during one cycle.
 - (6) A modification embedding a regenerator, where the rejected heat Q_{41} is stored in the regenerator and then transferred back to the gas as Q_{23} , is proposed. When this modification is applied to the cycle, prove that the thermal efficiency of this modified cycle is the same as that of the Carnot cycle.
 - (7) Although the modified cycle has not been practically realized, we can approximately realize the cycle with some improvements on the Brayton cycle (an ideal cycle for gas-turbine engine). How do you improve the Brayton cycle?

Group A Thermal Engineering Entrance Examination for International Master's Program 2023

Group A Thermal Engineering

- (II) Both sides of the flat plate having thickness 2*L* (m), thermal conductivity *k* (W/(m·K)), density ρ (kg/m³), specific heat *c* (J/(kg·K)), and uniform volumetric heat generation of *H* (W/m³) are exposed to a fluid of temperature T_{∞} (K). Under steady state conditions, the temperature distribution inside the flat plate is $T(x) = \alpha + \beta x + \gamma x^2$ (K), where $\alpha > 0$, $\beta < 0$, and $\gamma < 0$. Answer the following questions using *L*, *k*, ρ , *c*, T_{∞} , *x*, α , β , and γ as necessary. (25 points)
 - (1) Find the heat flux distribution q(x) in the flat plate. And find the position x where the temperature gradient becomes zero.
 - (2) Find the heat fluxes q(x) at x = L and x = -L.
 - (3) Find the volumetric heat generation of H (W/m³).
 - (4) Find the heat transfer coefficients *h* at x = L and x = -L.
 - (5) Find the temperature of the flat plate after enough time has elapsed after the heat generation inside the flat plate has stopped. How much heat per unit area (J/m^2) must be removed after the heating is stopped before reaching the steady state?

