Number

Question I. As shown in the right figure, a carriage (mass m_1) is connected to a wall with a linear spring (spring constant k). A pendulum consisting of a mass point m_2 and a massless rigid beam (length l) is connected to the carriage. A horizontal displacement of the carriage, x_1 , is determined with reference to the static equilibrium position and an angular displacement of the pendulum, θ , is determined as an angle from the vertical axis. Answer the following questions. The gravitational acceleration is g as indicated by an arrow in the figure. (25 points)

- (1) Coordinates of a mass point of the pendulum is (x_2, y_2) . Find the displacement (x_2, y_2) and the velocity (\dot{x}_2, \dot{y}_2) of the pendulum using x_1 , θ , \dot{x}_1 , and $\dot{\theta}$.
- (2) Determine the kinetic energy T and the potential energy U of this system.
- (3) Derive the Lagrange's equations of motion of the system using x_1 and θ as the generalized coordinates.
- (4) Linearize the equations of motion and express them in matrix form $M\ddot{x} + Kx = 0$ when $|\theta|$ and $|\dot{\theta}|$ are small. Here M and K denote the mass and stiffness matrices respectively, $\boldsymbol{x} = [x_1 \ \theta]^T$ is generalized displacement vector and $[]^T$ means transpose.
- (5) Find the characteristic equation (frequency equation) of this linearized system when k = 0, and find the eigenvalues ω_i^2 , (i = 1, 2) and natural modes \mathbf{X}_i , (i = 1, 2) of this linear system as well. Normalize the natural modes as $\mathbf{X}_i = \begin{bmatrix} 1 & X \end{bmatrix}^T$.

Question II. As shown in the right figure, a uniform bar of length r and mass m is placed on a semicircular surface of inner diameter r. A point mass of mass 2m is attached to a point A, one end of the bar, and the bar is in static equilibrium at a position inclined by θ from the horizontal as shown in the figure. Answer the following questions. The x-axis is horizontal and the y-axis is vertical. The semicircular surface is smooth and there is no friction between it and the bar. Let g be the acceleration of gravity.(25 points)

- (1) Express the coordinates (x_G, y_G) of the midpoint G of the bar using θ .
- (2) Express the coordinates (x_A, y_A) of the mass point using θ .
- (3) Find the tangent of θ (tan θ) using the principle of the virtual work.

