Group : Mathematics [13:15~14:15] Number \qquad

Applicant of INTERNATIONAL MASTER'S PROGRAM should answer in English.
(I) Answer the following questions for matrix \boldsymbol{A}. (40 points)
$\boldsymbol{A}=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & -1\end{array}\right]$
(1) Find all eigenvalues of matrix \boldsymbol{A} and their corresponding eigenvectors.
(2) Find a matrix \boldsymbol{P} satisfying the following condition while $a>b>c$.
$\boldsymbol{P}^{\boldsymbol{- 1}} \boldsymbol{A} \boldsymbol{P}=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$
(3) Consider a set of differential equations expressed as $\boldsymbol{y}^{\prime}=\boldsymbol{A} \boldsymbol{y}$, with $\boldsymbol{y}, \boldsymbol{y}^{\prime}$ and \boldsymbol{z} defined as follows. y_{1}, y_{2} and y_{3} are each functions of x. Express z_{1}, z_{2} and z_{3} satisfying $\boldsymbol{y}=\boldsymbol{P} \boldsymbol{z}$ using x.
$\boldsymbol{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right], \quad \boldsymbol{y}^{\prime}=\left[\begin{array}{l}\frac{d y_{1}}{d x} \\ \frac{d y_{2}}{d x} \\ \frac{d y_{3}}{d x}\end{array}\right], \quad \boldsymbol{z}=\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]$
(4) Find the solution of the simultaneous differential equations \boldsymbol{y} while $y_{1}=0, y_{2}=-4$ and $y_{3}=7$ when $x=0$.
(II) Find the general solution for the following differential equations. (30 points)
(1) $x^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2}=0$
(2) $\frac{\mathrm{d} y}{\mathrm{~d} x}+x y=x$
(3) $\left(2 x+\mathrm{e}^{y}\right) \mathrm{d} x+\left(x \mathrm{e}^{y}+\sin y+y \cos y\right) \mathrm{d} y=0$
(III) Answer the following questions. (30 points)
(1) Illustrate the region $D=\left\{(x, y) \mid x^{2}<y<x\right\}$ in the $x-y$ plane.
(2) Find $I=\iint_{D} 7 x^{3} y^{2} d x d y$.

