GC-4

Group A Thermal Engineering

Entrance Examination for International Master's Program 2024

Number

Applicant of INTERNATIONAL MASTER'S PROGRAM should answer in English.

- (1) Suppose a reversible closed-system cycle using an ideal gas. The gas at State 1 (temperature T_1 , pressure p_1 , and volume V_1) is adiabatically compressed to State 2 with a volume of V_2 . From State 2 to State 3, the gas is heated at the constant volume, and the temperature reaches to T_3 at State 3. From State 3 to State 4, the gas is adiabatically expanded. Finally, from State 4 to State 1, the gas is cooled at the constant volume. The specific-heat ratio is κ independent on the temperature, and the compression ratio is given as $\varepsilon = V_1 / V_2$. (25points)
 - (1) Draw this cycle on a p-V diagram and a T-S diagram with the numbers of State 1, 2, 3, and 4 (p: pressure, V: volume, T: temperature, and S: entropy) on Fig. 1. It is noted that State 1 is given.
 - (2) Find the temperature T_2 at State 2 with T_1 , κ , and ε .
 - (3) Find the temperature T_4 at State 4 with T_3 , κ , and ε .
 - (4) Find the heat Q_{23} added to the gas during the process $2 \rightarrow 3$ with T_1 , p_1 , V_1 , T_3 , κ , and ε .
 - (5) Find the thermal efficiency η_{th} of the cycle with κ and ε .
 - (6) Here, introducing a parameter φ of the pressure ratio of p_3 at State 3 and p_2 at State 2 ($\varphi = p_3 / p_2$), find the network L done by the gas during one cycle with p_1 , V_1 , κ , ε , and φ .
 - (7) How does the thermal efficiency η_{th} change when the parameter φ increases?

Fig. 1 *p*-*V* diagram and *T*-*S* diagram

□Applicant of INTERNATIONAL MASTER'S PROGRAM should answer in English.

Entrance Examination for International Master's Program 2024

Group A Thermal Engineering

Number

Applicant of INTERNATIONAL MASTER'S PROGRAM should answer in English.

(II) Solve the problem on steady-state and one-dimensional (x direction) heat transfer shown in Fig. 2.1. There are two types of flat plates A and B. The flat plate A generates heat uniformly at H (W/m³) inside. The left side of the plate A is completely insulated, and the right side contacts with the flat plate B. The plate B does not generate heat, and the temperature on its right side is maintained at T_2 . The thermal conductivities of the plates A and B are k_A and k_B (W/(m·K)) ($k_A < k_B$), and their thicknesses are L_A and L_B (m), respectively. The thermal conductivities do not depend on temperature. Set the left end of plate A to x=0. Answer the following questions using H, k_A , k_B , L_A , L_B , m, T_2 , and x as necessary. (25points)

- (1) Find the heat fluxes q(x=0) and $q(x=L_A)$.
- (2) Find the temperature T_1 at $x=L_A$.
- (3) The one-dimensional steady heat conduction equation in the plate A is as follows: $k_A \frac{d^2T}{dx^2} + H = 0$. Then, find the temperature T_0 at x=0.
- (4) Outline the temperature distribution in plates A and B on Fig. 2.2. Also, explain where and how you paid attention when you outline the distribution.

Next, suppose a case when the insulator loses its performance, and when *m* times the amount of heat generated by the entire plate A is released to the left side of the plate $A(0 \le m \le 1)$. Under this case, the T_0 and T_1 examined above have changed. Assuming all other conditions remain the same, answer the following questions.

- (5) Answer whether the temperature at $x=L_A$ is larger or smaller than the T_1 , and explain why.
- (6) Find the position x that exhibits the highest temperature in plate A and explain how you can find the position.

□ Applicant of INTERNATIONAL MASTER'S PROGRAM should answer in English.